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In the separable Hilbert space (H, (- , .» the following "operator moment
problem" is solved: given a complex sequence (Ck)kEZ generated by a meromorphic
function f, find TE B(H) and Uo E H such that (Tkuo' uo> = ck (k E Z). If the
sequence (ckhEZ is "normal," an adapted form of Vorobyev's method of moments
yields a sequence of two point Pade approximants to f A sufficient condition for
convergence of this sequence of approximants is given.

INTRODUCTION AND SUMMARY

In [2] an adapted form of the method of moments of Vorobyev [51 was
used to generate a sequence of ordinary Pade approximants and to obtain a
convergence result for this sequence.

It was van Rossum who raised the question of whether similar results
could be obtained for two point Pade approximants. The present paper
answers this question positively.

Given a functionjwith power series developmentsj(z) = L~=o cnz n with
co= I at °andj(z)=-L~=lc_nz-n at 00 we consider the «n-l)jn;m)
two point Pade approximants R~m)(z) (see Definition 1.1). For m = n we get
ordinary Pade approximants. Certain normality conditions for these two
point approximants lead to a biorthogonal system in the algebra ,c1' of the
Laurent polynomials with respect to the linear functional Q on ,c1' defined by
Q(zn) = cn (n E Z).

Ifjis meromorphic on C*\{p},p*O,p* 00, then the operator moment
problem for the sequence (Cn)nEZ (see Section 2) has a solution T: H --> H
which is a linear isomorphism in the separable Hilbert space H. By means of
the operator T we construct from the biorthogonal system of Laurent
polynomials a biorthogonal system in H. Using this biorthogonal system in
H and the normality conditions for the sequence (Cn)nEZ we get a sequence of
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linear projections En: H -t H with finite dimensional range such that the
operators Tn = En TEn satisfy

for z E C*\({p} U {poles!)

(eo E H fixed, II eo 11= 1).
If, moreover, the first sequence of the biorthogonal system in H is a

Schauder basis of H (in which case the second sequence is also a Schauder
basis of H), then R~m)(z)-tj(z) as n -t 00 for z E C*\({p} U {poles!), faster
than any geometric progression.

1. Letjbe a complex function which is holomorphic at 0 and at 00.

Suppose

and

00

j(z) = L cnz n in some neighborhood of 0
n=O

(1.1)

00

j(z)=- L c_nz- n in some neighborhood of 00 (1.2)
n=l

and assume Co = 1 and C-I i= O.
Just as in the case of ordinary Pade approximation one can prove that for

each n E N and each integer m with -n:::;; m :::;; n there exists precisely one
rational function R (m)(z) = U<m) (z)/v<m)(z) where U<m) and V<ml aren n-l n n-l n

polynomials with deg u~~1 :::;; n - 1 and deg V~m) :::;; n such that

and

as z -t 0

as z -t 00.

(1.3)

(1.4 )

DEFINITION 1.1. The unique rational function R ~ml(z) = u~~ 1(z)/ v~ml(z)
where U~~1 and v~m) are polynomials with deg U~~1 <n - 1 and
deg v~m):::;; n (n EN, -n:::;; m:::;; n, mE Z) which satisfies (1.3) and (1.4) is
called the «n - 1)/n; m) two point Pade approximant tof We say that R~m)

is normal if R ~ml has exactly one representation

(1.5)

with bo = 1 and bn i= 0 and

j(z) _R~ml(z) i= O(zn+m+ I) as z -t 0
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as z ~ 00.
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Given (1.1) and (1.2), relations (1.3) and (1.4) can be written as systems of
linear equations in ao'"'' an_ 1 and bo'"'' bn when R~m) is of the form (1.5).
Elimination of ao,..., an -1 gives

Cm bO+cm _ 1

Cm + 1 bo+cm

b l + + Cm - n bn = 0,

bl + +Cm - n + I bn = 0,
(1.6)

and it follows easily that normality of R ~m) is equivalent to

where

H~m-n+ I) =1= 0, and

(1.7)

Cp cp + I ... cp +q _ 1

H(P) = cp +I cp +2 ". cp +q
q for p E Z and q E N.

DEFINITION 1.2. The sequence (Cn)nEZ is m-normal for some integer m if
(1.7) is valid for each n E Nand (Cn)nEZ is m-seminormal if H~m-n) =1= 0 for
each n E N.

If (cn)nEz is m-normal, then R~ml is normal for each n E N such that
n>Iml. In the sequel of this section we assume that (Cn)nEZ is m-seminormal
for some m E Z.

Then (1.6) has for each n E N a unique solution bo,'''' bn with bo= 1 and
for the sequence (p~m»':~o of polynomials defined by

and

p(ml(Z) = 1 .
n Hn(m n) cm _ 1 ... cmtn - I

... zn

n = 1,2,... ,
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we have p~m)(z) = zn +b l zn-I + ... + bn~1 z +bn so znp~m)(z~ I) is just the
denominator of R ~m)(z) for n E Nand n ~ Im I. Let .5'1' be the algebra of the
Laurent polynomials in z, i.e., the algebra of all functions of the form

with p, q E Z and ap ,'''' aq E C, and let fl be the linear functional on ,cd'
defined by

fl(apz P + ... +aqz
q
) = apcp+ ... +aqcq.

Then we extend (p~m)(z))~=o to a biorthogonal system {p~,m)(z);

zm-IQ~m)(z)I~=o in.5'1' with respect to fl if we define

and

Cm -- n - 1 ... Cm - l

Q
(m)() (-1)"
n z = Him n)

n cm~2 cm+n~2

z~n 1

n = 1,2,....

Remark 1.1. In Section 2 we derive from this fl-biorthogonal system an
ordinary biorthogonal system in a Hilbert space, in the same way as the
Lanczos biorthogonal system is obtained from an orthogonal system of
polynomials.

Remark 1.2. If g(Z)=C~1+zf(z), then g(Z)=L~=ocn_Izn for small
Iz[ and g(z)=- L~=l c_n_1z- n for large Iz[. Since

Cm~n~ I ... cm~ I

Cm~2 ... cm+n- 2

... zn

it follows that (_1)n(H~m-n)jH~m-n-I»)Q~m)(z-I) is just the denominator of
the «n - l)jn; m) two point Pade approximant to the function g, provided
that -n ~ m ~ n and that this approximant to g is normal.

Remark 1.3. R~n) is the ordinary «n - l)jn) Pade approximant to!

Remark 1.4. It can be shown that the Laurent polynomials p~m) and
Q~m) satisfy the following two finite difference equations of the first order:

(1.8)
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Q(zmp~m)(z))

f3n = - Q(zm-Ip~m)(z) Q~m)(z))' n = 0,1,2,...
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(1.9)

n = 0,1,2,....
15 _ _ Q(zm-2Q~m)(z))

n- Q(zm 1p~m)(z) Q~m)(z))'

Elimination of p~m>, respectively Q~m), from (1.8) and (1.9) gives

f3nP~m;2(Z) - (f3n z + f3n+ I) p~m;I(Z) + f3n+ 1(1 - f3n15n) zp~ml(z) = 0,

and

n = 0, 1,2,... (1.10)

n = 0, 1,2,.... (1.11)

Suppose that (cn)nEz is m-normal. Then by (1.10) the denominators V:,ml of
R ~ml satisfy

(1.12)

Using (1.3) and (1.4) we get for the numerators U~m)1 of R~m)

f3n U~m;, (z) - (f3n + f3n + 1z) u~m)(z) + f3n + 1(1 - f3n I5n) zU~m) 1(z) = 0,

(1.13)

It follows from (1.12) and (1.13) that there exists a T-fraction of which the
nth approximant coincides with R ~m) if n ~ 1m I. (For the definition and
elementary properties of T-fraction see [3, pp. 173-179, "Kettenbruchen von
Thron"].)

2. In this section we consider the following "operator moment
problem":

Given a sequence (Yn)nEZ of complex numbers with Yo = 1,
can we find a sequence (Vn)nEZ in the separable Hilbert
space and a bounded linear operator A in H such that
AVn= vn+ 1 and (v n, Vo) = Yn for all n E Z?
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In this paper H is a separable Hilbert space and (en);;'~o is an orthonormal
basis of H.

The proof of the following theorem is about the same as that of
Theorem 4.1 of [2].

THEOREM 2.1. Let (Yn)nez be a sequence of complex numbers with
Yo E R, Yo > O. Then the following are equivalent:

(a) lim sUPn~oo jYnjJ/n < 00.

(b) There exist a sequence (vn)nez in H and a bounded linear operator
A in H such that AVn= vn+I and (v n, vo) = Ynfor all n E Z.

Proof (b) => (a) is obvious.

(a)=> (b). We may assume that Yo= 1. Since limsuPn~ooIYnl'/n < 00,

there is M> 0 such that IYnl ~ M n for n = 0,1,2,.... Let an =
((n 2+1)M2n _IYnI 2)1/2, n=1,2,.... Then an>O and n2M2n~a~~

(n 2+ 1)M2n , n = 1,2,.... Hence

and

f !Yn+k\2<00
k=l a k

for each n E Z (2.1 )

(
a n + L) 00 is bounded.

an n=l

It follows from (2.1) and (2.2) that

(2.2)

and
n = 1,2,...,

(2.3)

defines a bounded linear operator Tin H. Furthermore (2.3) implies

and
n = 1,2,...

n = 0,1,2,....
(2.4)

Now, let A = T* and put

and
n = 0,1,2,...

for n = 1,2,....
(2.5)

Notice that v_ n is well defined by (2.1). Moreover (2.4) and (2.5) imply that
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(V n, vo) = Yn for all n E Z and it is easily verified that AVn= Vn+ 1 for all
nEZ. I

Remark 2.1. Let A, T, (Yn)neZ and (vn)nez be as in the above proof and
put un=Tneo' n=0,1,2,.... Assume that Yn=cn where (cn)nez is m
seminormal. If

and

~o = Uo and
Cm - I ... cm +n - I

n = 1,2,...

lfIo=Vm- 1 and n = 1,2,... ,

then l~n; lfInl ::'=0 is a biorthogonal system in H. Clearly, ¢n = p~m)(T) uO'

n = 0, 1,2,... , but since T- 1 does not necessarily exist, we cannot say that
lfIn= [Tm-lQ~m)(T)]* uO' However, in the case that there exists a function ¢
with ~(z) = L:;::'=o cnz n in a neighborhood of°and ~(z) = - L:::'=1 c_nz- n in
a neighborhood of 00 which is meromorphic in C *\1P I, P 1= 0, P 1= 00, we
can generate the moments Cn' nEZ, by a linear isomorphism of H, as we
will see.

Remark 2.2. For use in the proof of the next theorem we quote [2,
Theorem 4.2]. Let L:;::'=o Ynzn have a positive radius of convergence and let
Yo = 1. Then the following are equivalent:

(a) There exists a compact linear operator A in H such that

n = 0,1,2,....

(b) There is a meromorphic function ~ on C such that
~(z) = L:;::'=o Ynzn in some neighborhood ofO.

In the proof of (b) => (a) of this theorem the function ~ was written as ~(z) =
(I + zh(z))/(1 - zg(z)), where g and h were entire functions. Using the
power-series developments of g and h about 0, a compact operator A was
constructed such that «I - zA) - 1 eo, eo) = ~(z) for z E C \ {poles}. It can be
shown by elementary linear algebra that for this operator A we have:

z is a regular value for A (i.e., (I - zA) - I exists as a
bounded linear operator defined on all of H) if and only if
l-zg(z)1=O.
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So we have the following:
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LEMMA 2.1. If ~ is meromorphic on C, ~(O) = 1 and ~ does not have a
pole at zo E C, then there exists a compact linear operator A in H such that
«I - ZA)-l eo, eo> = ~(z)for z E C \ {poles} and Zo is a regular value for A.

THEOREM 2.2. Let (Yn)nez be a sequence ofcomplex numbers with Yo = 1
and let pEe, p *- O. Then the following are equivalent:

(a) There exists a meromorphic function ~ on C *\ {p} with ~(z) =
L:;:"=oYnzn in some neighborhood of 0 and ~(z)=- L:;:"=l Y_nz-n in some
neoghborhood of 00.

(b) There exists a compact linear operator A in H such that
(lp-l(I +AW eo, eo> = Ynfor all n E Z.

Proof (a)=> (b). If h(z)=(1+z)-1 ~(pz(l+z)-I), then h is meromor
phic on C, h(O) = I and -I is not a pole of h. By Lemma 2.1 there exists a
compact linear operator A in H such that h(z) = «I - zA) - 1 eo, eo>, z E C \
{poles} and (I + A) - 1 exists. Clearly ~(z) = p(p - z) - 1h(z(p - z) - 1),
so it follows from

p(p - Z)-l II - z(p - Z)-l A]-l = II - zp-l(I +A)]-l (2.6)

that ~(z) = ([I - zp-l(I +A)]-l eo, eo>' Hence for smalllz[ we have

00

L Ynzn=~(z)=(II-zp-l(I+A)I-leo,eo>
n=O

= (~o znIP-l(I+AWeo,eo)= n~o zn(lp-l(I+AWeo,eo>,

so Yn=(lp-l(I+A)]neo,eo> for n=O, 1,2,.... Since (I+A)-l exists we
have

if zp - I is regular for I + A. For sufficiently large Iz I this gives

00

- L Y_nz-n=~(z)=(-z-lp(I+A)-III-z-lp(I+A)-I]-leo,eo>

n=l

00

=- L z-n(lp-l(I+A)]-neo,eo),
n=l
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(b)=> (a). Since A is compact, h(z)=([I-zAj-1eo,eo) is
meromorphic in C, so ~(z) = pep - z) - 1h(z(p - z) - 1) is meromorphic in
C*\{p}. Using (2.6), (2.7) and the fact that (I +A)-I exists, we get

and

(f)

~(z) = L Yn zn
n=O

00

~(z)=- \' Y_nz-n
n~1

for small Iz I

for large Iz I· I

Remark 2.3. Let (cn)nEZ and I be as in Section 1 and assume that I is
meromorphic in C *\ {p }, p *- 0, p *- 00. Then by the above theorem there
exists a linear isomorphism Tin H such that (Tneo' eo) = cn for all n E Z. If
p~m) and Q~m) are as in Section 1, then it follows from Remark 2.1 that
jP~m)(T) eo; [Tm-I Q::"\T)] * eo} ;;0=0 is a biorthogonal system in H.

3. We now return to the function I of Section 1 with 1(0) = 1 and
I(z) = I:;;o=o cnz n and I(z) = - I:;;o= I C_nZ -n in neighborhoods of 0, respec
tively 00. We assume that the sequence (cn)nEZ is m-seminormal for some
nonnegative integer m.

If n) m and R~m) has the form (1.5) with bo= 1, then ao,..·, an_1'
bo,..• , bn is the unique solution with bo= 1 of the systems of linear equations
given by (1.3) and (1.4). Since m ) a these systems are

an_I=Cn_ 1

a = Cn

b, + + Co bn_1'

b l + +c1 bn _ , +co

(3.1 )

and

-am = C _ 1bm+ 1 + C _ 2 bm+ 2 + +Cm_n+ Ibn _ I + Cm_n bn,

-am+ I = C - Ibm + 2 + + em _n+ 2 bn_ I + Cm- n+ 1 bn,
(3.2)
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By Theorem 2.1 and Remark 2.1 there are sequences (un);:O~o and (vn)nEz
with Uo= Vo= eo in H and a bounded linear operator T: H ~ H such that

n = 0,1,2,..., and nEZ, (3.3)

and

For every n E N we put

n = 0, 1, 2,... , k E Z. (3.4 )

and

Vn = span{vm _ n , V m - n + 1 , ... , V m - 1 }·

It follows from the normality of (Cn)nEz that (un);:O=o and (Vm-n)':~ 1 are both
independent sequences in H and that

and n = 1,2,....

Since dim Un < 00 and V~ is closed, this implies

n = 1,2,....

Let En: H ~ H be the continous linear projection onto Un with kernel V';-,
n = 1,2,..., and let Tn: H ~ H be defined by Tn = En TEn' n = 1,2,.... Then
clearly Tn(H) C Un and by (3.3)

for k = 0, 1,..., n - 1. (3.5)

Since un - p~m)(T) UoE Un and p~m)(T) UoE V~ (cf. the biorthogonal system
{¢n; lfIn};:O=o in Remark 2.1), we have

n = 1,2,... ,

hence

n = 1,2,...,

and

n = 1,2,.... (3.6)

This implies that p~m)(Tn)x = 0 for all x E Un so Tn satisfies the polynomial
equation

n = 1,2,.... (3.7)
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If Tn denotes the restriction of Tn to Un' then it is obvious from the matrix
representation of Tn with respect to the basis uo, U 1 '00" un- 1of Un that p~m)

is the characteristic polynomial of Tn and that Tn is an isomorphism of Un if
p~m)(o) =1= °which holds if (Cn)nEZ is m-seminormal.

THEOREM 3.1. For n :;;" m and z E C \ lpoles of R ~m)} we have

«(I - zTn)-I UO' uo) = R~ml(z).

Proof Let n:;;" m and let p~m)(z) = bozn+ b l zn-I + ... + bn with bo= 1.
Then by (3.7) we have

b Tntktl+b Tntk+ .. ·+b Tkt2 +b Tkt1=0o n Inn-I n n n for k = 0, 1,2,....

(3.8)

Since Tn is compact, (I - zTn) -I IS an operator-valued meromorphic
function on C which satisfies

00

(I - ZTn)-' = ~ zkT~
k~O

for sufficiently small Iz I.

Using (3.8) we get for small Izl

znp:,ml(z-l)(I-zTn)-1 =Bo+zB1+ ... +znBn,

where

B -bTi bTY-l bI1- 0 n+ I n + ... + l'

Hence for small 1z I

} = 0, 1,... , n. (3.9)

(3.10)

Since both sides of (3.10) are meromorphic on C, (3.10) holds for all
z E C \ lpo1es}. If we take} = n in (3.9) we get Bn= p~m\Tn)' so by (3.6) we
have

It follows from (3.9), (3.5), (3.4) and (3.1) that

(3.11 )

} = 0, 1,... , n - 1. (3.12 )

Now (3.11) and (3.12) yield

640(40/4-3
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Remark 3.1. It follows almost immediately from [1, VII.3.16, "Minimal
equation theorem"] that an operator Tin H satisfies a non-trivial polynomial
equation P(T) = 0 if and only if the spectrum of T consists only of a finite
set of poles of (AI - T)-I [1, VII.5.17].

In order to get convergence results for the sequence of approximants
(R~m)(z));::'~m tofwe assume from now on thatfis meromorphic on C*\lpl,
P *- 0, P *- 00. Then by Theorem 2.2 there exists a compact linear operator A
in H such that ([p-I(I +A)jk eo, eo> = ck for all k E Z. Put

(3.13 )

and let Tkeo= Uk and (T*)k eo = Uk for all k E Z and define the subspaces Un
and Vn, the projections En and the operators Tn' n = 1,2,... , as in the
beginning of this section. We also assume that the biorthogonal system

!
p<m)(T)u' [(_I)nH~m-n)Tm-1Q<m)(T)] * u (00

n 0' H<m-n-I) n 0
n+l n~O

is a Schauder basis of H together with the associated sequence of coefficient
functionals. It follows from elementary theory of bases in Banach spaces that
the assumption that (p~m)(T) uo);::'~o is a basis of H is equivalent to

H = spanlunl;::'~o and (liEn 11);::'= I is bounded,

and that this assumption is also equivalent to

for all x E H.

See for instance [4, Chap. I, Theorem 4.1].
Since A = PT - I

n = 1,2,.... (3.14 )

Let the linear operators A n be defined by

n = 1,2,.... (3.15 )

By (3.14) a slight modification of Vorobyev's method [5, Chap. II] applied
to the compact operators A and the operators A n yields

LEMMA 3.1. (i) limn_oo IIA n -A II = O.
(ii) If Ii is regular for A, then Ii is regular for A n if n is sufficiently

large.

(iii) limn_oo 11(1 -IiA n) -I - (I -!.tA) -III = 0 if Ii is regular for A.
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(iv) limn~ooll(I-,uAn)-luo-(I-,uA)-luolll/n=O {i.e., (I-,uAn)-luo
-; (I - flA) -1 Uo as n -; 00, faster then any geometric progression) if fl is
regular for A.

Remark 3.2. The fact that (p~m>CT) uo)~=o is a basis of H implies that
([Tm-lQ~m)(T)l*uo)~=o is a basis of H as well.

LEMMA 3.2. If z is regular for T, then z is regular for Tn if n is
sufficiently large.

Proof It follows from (2.6) that z(p-Z)-I is regular for A so by
Lemma 3.1 there is no such that z(p - z) - 1 is regular for A n as n ~ no' Let
n ~ no' Since Tn has finite dimensional range, it suffices to show that 1- zTn
is one-to-one. Let x - zTnx = O. Then clearly x E Un and Enx = x. Since
Tn = EnTEn = E nP-l(1 +A) En = p-l(En+EnAEn) = p-I(En+A n) by
(3.15), it follows that x-z(p-z)-IAnx=O and this implies x=O, for
z(p - z) -I is regular for An' Hence 1- zTn is one-to-one. I

LEMMA 3.3. Let z be regular for T, x = (I - zT) - I Uo and
x n= (I -ZT,,)-I uofor n sufficiently large. Then

lim Ilxn - xl1 11n = o.
n~OO

(3.16)

Proof By (2.6) we have x=p(p-z)-I(I-z(p-Z)-IA)-luo with
z(p-Z)-l regular for A. In a similar way, using xnE Un' we get
x" = pep - z)-I(1 - z(p - Z)-l An)-l Uo for large n. Hence (3.16) follows
from Lemma 3.1. I

THEOREM 3.2. Let f be meromorphic on C *\ {p}, p *' 0, p *' 00 and let
fez) = [%"=0 CkZk in some neighborhood of 0, f(O) = I, and
fez) = - [;;"= I Ck Z- k in some neighborhood of 00. Suppose that (Ck)kEZ is
m-seminormal for some nonnegative integer m. Let T be as in (3.13) and
assume that (p~m)(T) uo)~=o is a basis of H. Then the sequence (R ~m)(z ))~~ I

of ((n - I)/n; m) two point Pade approximants to f converges to fez) for
every z which is regular for T and the convergence is faster then any
geometric progression.

Proof If z IS regular for T and n is large enough, we have by
Theorem 3.1

and because

fez) = «(1 - zT)-1 uo, uo>
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Lemma 3.3 gives
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IR ~m)(Z) - j(Z )1 1/n <11(/ - zTn) -1 Uo- (/ - zT) - I UoIII/n -t 0

as n -t 00. I

Remark 3.3. The values of z which are not regular for T form a coun
table 'set which has no accumulation point in C * except possibly p.
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