JOURNAL OF APPROXIMATION THEORY 40, 313-326 (1984)

Moment Methods in Two Point
Pade Approximation

E. HENDRIKSEN

Instituut voor Propedeutische Wiskunde,
Universiteit van Amsterdam, Amsterdam, The Netherlands

Communicated by E. W. Cheney
Received May 17, 1982

In the separable Hilbert space (H,(-,-)) the following “operator moment
problem™ is solved: given a complex sequence (¢, ).z generated by a meromorphic
function f; find T€ B(H) and u, € H such that (T*uy.u,)=c, (kE€Z). If the
sequence (C, ).z is “normal,” an adapted form of Vorobyev’s method of moments
yields a sequence of two point Padé approximants to f. A sufficient condition for
convergence of this sequence of approximants is given.

INTRODUCTION AND SUMMARY

In [2] an adapted form of the method of moments of Vorobyev [5] was
used to generate a sequence of ordinary Padé approximants and to obtain a
convergence result for this sequence.

It was van Rossum who raised the question of whether similar results
could be obtained for two point Padé approximants. The present paper
answers this question positively.

Given a function f with power series developments f(z) =}  ¢,z" with
co=1at0and f(z)=—) 7 ,c_,z " at oo we consider the ((n — 1)/n; m)
two point Padé approximants R{™(z) (see Definition 1.1). For m = n we get
ordinary Padé approximants. Certain normality conditions for these two
point approximants lead to a biorthogonal system in the algebra .« of the
Laurent polynomials with respect to the linear functional  on .« defined by
2(z")=c, (n€Z).

If f is meromorphic on C*\{p}, p# 0, p # oo, then the operator moment
problem for the sequence (c,),., (see Section 2) has a solution 7: H—» H
which is a linear isomorphism in the separable Hilbert space H. By means of
the operator 7 we construct from the biorthogonal system of Laurent
polynomials a biorthogonal system in H. Using this biorthogonal system in
H and the normality conditions for the sequence (c,),.z We get a sequence of
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linear projections E,: H— H with finite dimensional range such that the
operators T, = F, TE, satisfy

(U =2T,) ey, e0)=Ry™(z)  for z€C*\({p}U {poles})

(e, € H fixed, | gy] = 1).

If, moreover, the first sequence of the biorthogonal system in H is a
Schauder basis of H (in which case the second sequence is also a Schauder
basis of H), then R{™(z) - f(z) as n— oo for z € C*\({ p} U {poles}), faster
than any geometric progression.

1. Let fbe a complex function which is holomorphic at 0 and at co.
Suppose

(s 0]

f(z)= > ¢,z" in some neighborhood of 0 (1.1)
n=0
and
f(@)=— Y c¢_,z™" in some neighborhood of oo (1.2)

n=

and assume ¢,= 1 and ¢_, # 0.

Just as in the case of ordinary Padé approximation one can prove that for
each n € N and each integer m with —n < m < n there exists precisely one
rational function R(™(z)=U' (2)/V{"(z) where U™, and V™ are

polynomials with deg U™, < n— 1 and deg V™ < n such that
f(z) = R™(z) = O(z"*™) as z-0 (1.3)
and

f(@)—R™(Z)=0(z"""""") as z- oo. (1.4)

DEFINITION 1.1.  The unique rational function R'™(z) = U (2)/ V" (2)
where U, and V™ are polynomials with deg U™ <n—1 and
deg V™ <n (€N, —n< m< n, m € Z) which satisfies (1.3) and (1.4) is
called the ((n — 1)/n; m) two point Padé approximant to f. We say that R
is normal if R has exactly one representation

ay+az+--+a, z""

R(m) —
w @) by+bz+ - +b, 2" +b,2"

(1.5)

with by=1 and b, 0 and

f(@)—R™(z)# 0" ") as z—0
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and
f@)—R™(Z)#£0(@z""*""?)  as z- .

Given (1.1) and (1.2), relations (1.3) and (1.4) can be written as systems of
linear equations in ag,...,a,_, and by,..., b, when R'™ is of the form (1.5).
Elimination of a,,..., a,_; gives

Cm b0+cm—l bl+"'+cm7n bn:O’

Crmtt b0+cm bl+'”+cm—n+lbn=07 (16)

Cm+n~lb0+cm+n—2bl+“'+CmAl bn=0
and it follows easily that normality of R(™ is equivalent to

H;m~n)¢0’ H;m—n-f-l]:#o’ Hitni:");to and H(ﬂlrth—InAH#O’

(L7)
where
Cp Cor1 " Cpig
HP = ov1 G277 Cpag for p€Z and g€EN.
Cpra—1Cp+q " Cprag—2

DerINITION 1.2. The sequence (¢,),cz is m-normal for some integer m if
(1.7) is valid for each n € N and (c,),cz is m-seminormal if H"~" 0 for
each n € N.

If (c,),ez is m-normal, then RY™ is normal for each n € N such that
n 2 |m|. In the sequel of this section we assume that (c,),.z is m-seminormal
for some me Z.

Then (1.6) has for each n € N a unique solution by,..., b, with b, =1 and
for the sequence (P'™)>_, of polynomials defined by

P{™(z)=1

and

m |
Py )(Z)Z*I_‘f(m . e , n=1,2,..,

n m—1
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we have P{(z)=z"+b,z"" ' + .- +b,_,z+b, s0 z"Pi™(z7") is just the
denominator of R{™(z) for n € N and n > |m|. Let = be the algebra of the
Laurent polynomials in z, i.e., the algebra of all functions of the form

P p+1 .. q
a,z+a,,,z77 +--+a,z

with p,q € Z and a,...,a,€C, and let 2 be the linear functional on .«
defined by

Qa,z" +---+a,z%=a,c,+ - +a,c,.

Then we extend (PU"(z))X, to a biorthogonal system {P™(z);
2" QUM (2)} 9, in .o/ with respect to 2 if we define

Q" (z)=1
and
cm—n—l : CIn~l
="
QLM)( )_ ((m—)n) ’ n=1,2,
Hn Con_2 " Coin—2
z " 1

Remark 1.1. In Section 2 we derive from this 2-biorthogonal system an
ordinary biorthogonal system in a Hilbert space, in the same way as the
Lanczos biorthogonal system is obtained from an orthogonal system of
polynomials.

Remark 1.2. 1If g(z)=c_, + zf(z), then g(z)=3 5 ,c,_,z" for small

|z| and g(z)=— )P ,c_,_,z"" for large | z|. Since
Crn—n—1"""Cp_1
H{ = S
(_ln n__ zn (m)z= e ,
) H;m n—1) Qn () Hilm n—1) Cmﬁz 'Cm+n_2
. zn

it follows that (—1)"(H{"~™/H{"~"=") Q" (z~") is just the denominator of
the ((n — 1)/n; m) two point Padé approximant to the function g, provided
that —n < m < n and that this approximant to g is normal.

Remark 1.3. R{" is the ordinary ((n — 1)/n) Padé approximant to f.

Remark 1.4. It can be shown that the Laurent polynomials P{” and
Q™ satisfy the following two finite difference equations of the first order:

P(™ (z) = zP{"(2) + B,2"QV"(2) (1.8)
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with
B ,Q(z'"P('")(z)) B
=g rme oy "0
and
(2) =270 (2) + 8,27 PM(2), (1.9)
m—2ny(m)
5, = QE"0,7(2)) n=0,1,2,..

T2ETP @) 0rE)
Elimination of P{™, respectively Q'™ from (1.8) and (1.9) gives
B PyVs(2) — Buz + By ) PV (@) + B, (1= B,6,) 2P, (2) = 0,
n=0,1,2... (1.10)
and
y(z) = (6,2 4 0,, 0@ (@) +d,,,(1-6,8,) 210" (2) =0,
n=0,1,2u.  (L11)

Suppose that (c,),cz is m-normal. Then by (1.10) the denominators V'\" of
R{™ satisfy

ﬂn V:Ir:—)Z(Z) - (ﬂn +:Bn+lz) V:‘l’i)l(z) +ﬂn+l(l —ﬁnan)ZVLM)(Z) = 0’
>iml (112)

Using (1.3) and (1.4) we get for the numerators U™, of R{™

U (@) = B, + B, 2) U (2) + B,y (1= B,0,) 2U,7 1 (2) = 0,
n>\im). (1.13)

It follows from (1.12) and (1.13) that there exists a T-fraction of which the
nth approximant coincides with RY™ if n>|m|. (For the definition and
elementary properties of T-fraction see |3, pp. 173-179, “Kettenbruchen von
Thron”].)

2. In this section we consider the following ‘“‘operator moment
problem™:

Given a sequence (y,),cz of complex numbers with y, =1,
can we find a sequence (v,),z in the separable Hilbert
space and a bounded linear operator 4 in H such that
Av,=v,,,and {v,,v5) =7, for all nE Z?



318 E. HENDRIKSEN

In this paper H is a separable Hilbert space and (e,)5_, is an orthonormal
basis of H.

The proof of the following theorem is about the same as that of
Theorem 4.1 of [2].

THEOREM 2.1. Let (y,),cz be a sequence of complex numbers with
Y0 ER, ¥y > 0. Then the following are equivalent:

(a) hm Supnaoo lynll/n < co.

(b) There exist a sequence (v,),cz in H and a bounded linear operator
A in H such that Av,=v,  and (v,,vy)=7y, forall n€ L.

Proof. (b)= (a) is obvious.

(a)= (b). We may assume that y, = L. Since lim sup,_., |7, < ©,

there is M >0 such that |y,|<M" for n=0,1,2,... Let a,=
(B> + )M —1y,1)"?, n=1,2,... Then a,>0 and n’M*"<a,<
(n* + H)M*, n=1,2,.... Hence

< foreachne Z (2.1)

and

(b) is bounded. (2.2)
n=1

ay,

It follows from (2.1) and (2.2) that

Teo=7,e,+ aye,

and e s a7 u (2.3)
Te — YoVnt1— Vi¥n ey — 17n e, +Intle n=1,2..

a'l aﬂ a’l

n

defines a bounded linear operator T in H. Furthermore (2.3) implies

T"e() = '}7,,60 + anen9 n= 1, 2,...
and (2.4)
(T"ey, e) = P n=0,1,2,..

Now, let A = T* and put

v,=A4"e,, n=0,1,2,.
and (2.5)

© —
D=y gt S Lok Vonlk g g2,
k=1 Ay

Notice that v_, is well defined by (2.1). Moreover (2.4) and (2.5) imply that
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(v, 09y =7y, for all n€Z and it is easily verified that Av,=v, , for all
nel.

Remark 2.1. Let A, T, (y,),ez and (v,),cz be as in the above proof and
put u,=T"¢,, n=90,1,2,.. Assume that y,=¢, where (c,),cz is m-
seminormal. If

Conen " Cm
I
¢0:u0 and ¢n= H(m‘n) » h= 15 29'"
n Crm—1 Crmtn—1
Uy u,
and
Em—nvl 'cm—l
B =D e s
l”O_Um—l and uln_’ [r(m—-n) | = — L h=1, 4.,
Hn Cm-2  Cpin-2
Um—n-1"""Um—1

then {¢,;v,} , is a biorthogonal system in H. Clearly, ¢, = PV (T) u,,
n=0, 1, 2,.., but since T~' does not necessarily exist, we cannot say that
v, = |T"'QU(T)]* u,. However, in the case that there exists a function ¢
with ¢(z) =3 ,c,z" in a neighborhood of 0 and ¢(z)=—>"F ,c_,z "in
a neighborhood of oo which is meromorphic in C*\{p}, p#0, p+ 0, we
can generate the moments c¢,, n € Z, by a linear isomorphism of H, as we
will see.

Remark 2.2. For use in the proof of the next theorem we quote |2,
Theorem 4.2]. Let ) >, v,z" have a positive radius of convergence and let
v, = 1. Then the following are equivalent:

{a) There exists a compact linear operator A in H such that
<A"eo’eo>:)’ns n:O, 1, 2,....

(b) There is a meromorphic function ¢ on C such that
¢(z)=37 ,y,2" in some neighborhood of 0.

In the proof of (b) = (a) of this theorem the function ¢ was written as ¢(z) =
(1 + zA(2))/(1 — zg(z)), where g and & were entire functions. Using the
power-series developments of g and & about 0, a compact operator 4 was
constructed such that (I —z4)" ! e,, e,) = ¢(z) for z € C\{poles}. It can be
shown by elementary linear algebra that for this operator 4 we have:

z is a regular value for 4 (i.e, (I —zA)™' exists as a
bounded linear operator defined on all of H) if and only if
I —zg(z) # 0.
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So we have the following:

LEMMA 2.1. If ¢ is meromorphic on C, ¢(0) =1 and ¢ does not have a
pole at z, € C, then there exists a compact linear operator A in H such that
({(I—24)" " ey, e,y = 8(z) for z € C\{ poles} and z, is a regular value for A.

THEOREM 2.2. Let (y,),cz be a sequence of complex numbers with y, =1
and let p€ C, p+# 0. Then the following are equivalent:

(a) There exists a meromorphic function ¢ on C*\{p} with ¢(z) =

DX o ¥n2" in some neighborhood of O and ¢(z)=—37 ,v_,z " in some
neoghborhood of 0.

(b) There exists a compact linear operator A in H such that
{p~'d+4)|" ey, €)=y, forall n€ L.

Proof. (a)=(b). If h(z)=(14+2z) '¢(pz(14+2z)~"), then 4 is meromor-
phic on C, #{(0) =1 and —1 is not a pole of 4. By Lemma 2.1 there exists a
compact linear operator A in H such that h(z) = ((I —zA4) ' e, €y), z € C\
{poles} and (I +A4)”' exists. Clearly ¢(z)=p(p—2z)"'h(z(p—12)""),
so it follows from

Pp—2)'I—z(p—2)"'A] ' =[T—zp "I +4)]""  (26)
that ¢(z) = ([I —zp~'(I + A)] =" e,, €,). Hence for small |z| we have

Y 2" =9@)={I—zp7 U+ A)] g ep)

n=0

= < y z”[p"(]+A)]"eO,eD>= N 2 pT T+ A)])" e, ep),
n=0 n=

0

so 7, ={[p 'U+A4)])" ey e,) for n=0,1,2,... Since (I +4)~" exists we
have

U—zp "I+ A4) ' =—z7'pI+A) ' [I—z 'pd+4)"']"" (2.7)

if zp~! is regular for I + 4. For sufficiently large |z]| this gives

[e o]

X e =@ = e U+ ) TP A) ) egse)
= (- X A e
= X (T U A ey o)

hence y_,={[p '(I+A4)] "ey, e, for n=1,2,...
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(b)=(a). Since A4 is compact, h(z)={[I—zA| ‘e, e,) is
meromorphic in C, so ¢(z)=p(p—2z)~ "' h(z(p—z)~"') is meromorphic in
C*\{p}. Using (2.6), (2.7) and the fact that (I + 4)~' exists, we get

[ee]
#(z)= > y,z" for small | z|

n=0
and

(e8]
#(z)=— > y_,z "  forlarge|z|.

n=1

Remark 2.3. Let (c,),cz and f be as in Section I and assume that f is
meromorphic in C*\{p}, p#0, p+# 0. Then by the above theorem there
exists a linear isomorphism 7 in H such that (T"e,, e,) =c, for all n€ Z. If
P{™ and Q™ are as in Section 1, then it follows from Remark 2.1 that
IP(T) ey; [T 'QU(T)]* ey} L., is a biorthogonal system in H.

3. We now return to the function f of Section 1 with f(0)=1 and
f)y=X" ,c,z" and f(z)=—>" _,c_,z " in neighborhoods of 0, respec-
tively co. We assume that the sequence (c,),.; is m-seminormal for some
nonnegative integer m.

If n>m and R has the form (1.5) with b,=1, then ay,...a, ,,
bgs-s b, is the unique solution with b, = 1 of the systems of linear equations
given by (1.3) and (1.4). Since m > O these systems are

a, =¢C by,

a, =g¢ by + ¢ b,,

a,,7,=c,,v, b0+cn72 bl+.”+CObn—l’ (3‘1)
0 =C, b0+cn—l b1+"'+cl bn—l+c() bn’

0 :Cm+n-lb0+cm+n—2bl+“'+Cmbn—l+cm-lb

and
Ay :c—lbm+1+c—2bm+2+"'+cm~n+lbn—l+cm-n bn-’
1 = C—lbm+2+"'+Cm—n+2bn~l+cm~n+1bn’
........................................................... (3.2)
—dy_; C_y bn~l +c_, bn’
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By Theorem 2.1 and Remark 2.1 there are sequences (u,), o and (v,),cz
with u, = v, =¢, in H and a bounded linear operator T: H — H such that

Tey=u,, n=0,1,2,., and T*v,=v,,,, neZ, (3.3)

and
(Upys Vi) = Cppy s n=0,1,2,.. k€L (3.4)

For every n € N we put
U,=span{ug, ..., 4,_,}
and
V=38pan{Vp_, Um_ps1smees U1 -

It follows from the normality of (c,),cz that (u,)s., and (v,,_,),., are both
independent sequences in H and that

U,NV:i={0) and UNV,={0), n=12..
Since dim U, < oo and V7 is closed, this implies
H=U,®V:, n=12..

Let E,: H— H be the continous linear projection onto U, with kernel V.,
n=1,2,., and let T,: H— H be defined by T, =E,TE,, n=1,2,.... Then
clearly T,(H) < U, and by (3.3)

Thuy=u, for k=0,1l..n— 1 (3.5)

Since u, — P(T) u, € U, and P (T) u, € V- (cf. the biorthogonal system
{5 Watneo in Remark 2.1), we have

Enun:un_Pixm)(T) Uy, n= 1,2,...,
hence

T:uo = Tnunvl = En TEnunfl = En TunAl = Enun =u,— PLM)(T) Up,
n=1,2,..,
and
P"(T,)uy =0, n=1,2,... (3.6)
This implies that P{™(T,) x =0 for all x € U, so T, satisfies the polynomial
equation

T,Pr™(T,)=0, n=1,2,... (3.7)
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If T, denotes the restriction of T, to U,, then it is obvious from the matrix
representation of T, with respect to the basxs Ugs Uy s U,y Of U, that P
is the characteristic polynomial of T and that T, is an isomorphism of U, if
P{™(0) # 0 which holds if (c, ),z is m-seminormal.

THEOREM 3.1. For n>m and z € C\{poles of R\"} we have
(U =zT,) " uy, up) = R"(2).

Proof. Let n>m and let P{"(z) = byz" + b,z"' + --- + b, with b, = 1.
Then by (3.7) we have

boTM A 4 b, Tk oo b, TEY 24 b, TH' =0 for k=0,1,2,..
(3.8)

Since T, is compact, (I —zT,)”' is an operator-valued meromorphic

function on C which satisfies

(e @]
(I—2zT,)"'= N Z*T%  for sufficiently small |z|.
=0

>

Using (3.8) we get for small |z|
2"P(z" W —z2T,) '=By+:zB,+ - +z"B,,
where

B,=bT,+ b, '+ +bl, j=01..n (3.9)

J

Hence for small |z]

B,+zB, +---+2"B,
Z"PLM)(Z‘I)

(I—zT,) ' = (3.10)

Since both sides of (3.10) are meromorphic on C, (3.10) holds for all
z € C\{poles}. If we take j =n in (3.9) we get B, = P (T,), so by (3.6) we
have

B,u,=0. (3.11)
It follows from (3.9), (3.5), (3.4) and (3.1) that
(Bjuy, uy)=a, Jj=0,1,.,n—1. (3.12)
Now (3.11) and (3.12) vyield

(I—=z2T,) ' ug,ugy=R{™ . for z€&C\{poles}. 1

640/40/4-3



324 E. HENDRIKSEN

Remark 3.1. It follows almost immediately from [1, V11.3.16, “Minimal
equation theorem”| that an operator T in H satisfies a non-trivial polynomial
equation P(T) =0 if and only if the spectrum of T consists only of a finite
set of poles of (Al —T)~"' [1, VIL5.17].

In order to get convergence results for the sequence of approximants
(RU™(2))_,, to f we assume from now on that fis meromorphic on C*\{p},
p# 0, p# o0. Then by Theorem 2.2 there exists a compact linear operator 4
in H such that {[p~'(I + 4)])* ey, e,) =, for all k € Z. Put

T=p~'(I+4) (3.13)

and let Te, = u, and (T*)* e, = v, for all k € Z and define the subspaces U,
and V,, the projections E, and the operators T,, n=1,2,.., as in the
beginning of this section. We also assume that the biorthogonal system

(_l)n H(m-n) B % [ee}
§P;M)(T) Uy [—I-—I‘”’_"—n_” ™ le,"')(T) U,
n+1 n=90

is a Schauder basis of H together with the associated sequence of coefficient
functionals. It follows from elementary theory of bases in Banach spaces that
the assumption that (PU™(T) u,) ., is a basis of H is equivalent to

H = span{u,}* , and (| E,,{|);~, is bounded,
and that this assumption is also equivalent to

lim E x=x forallx € H.

n—00

See for instance |4, Chap. I, Theorem 4.1].
Since A =pT —1

span{ug, Ay, A" 'uyt = U, n=1,2,.. (3.14)
Let the linear operators A, be defined by
A,=E,AE,, n=12,. (3.15)

By (3.14) a slight modification of Vorobyev’s method (5, Chap. I1} applied
to the compact operators A and the operators 4, yields

LEmMA 3.1. (i) lim, . ||4,—A4]=0.

(ii) If u is regular for A, then u is regular for A, if n is sufficiently
large.

(i) lim,_ | —ud,) ' — I —pA)'||=0 if u is regular for A.
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(V) lim, o (T —pd,) " ug—(T—ud) ' ug]" =0 (ie (I—pA,) " uy
— (I —ud) ' u, as n— oo, faster then any geometric progression) if u is
regular for A.

Remark 3.2. The fact that (P{"(T)u,) ., is a basis of H implies that
([T 'QU™(T)]* ug)L., is a basis of H as well.

LeEmMmA 3.2, If z is regular for T, then z is regular for T, if n is
sufficiently large.

Proof. 1t follows from (2.6) that z(p—z)~' is regular for 4 so by
Lemma 3.1 there is n, such that z(p —z)~' is regular for 4, as n > n,. Let
n 2 n,. Since T, has finite dimensional range, it suffices to show that 7 —zT,
is one-to-one. Let x —zT,x=0. Then clearly x&€ U, and E,x =x. Since
T,=E,TE,=E,p 'I+A4)E,=p ‘'(E, + E,AE,) = p""(E, +4,) by
(3.15), it follows that x —z(p—=z) ' 4,x=0 and this implies x =0, for
z(p—z) ' is regular for 4,. Hence I — zT, is one-to-one. [

LEMMA 3.3. Let z be vregular for T, x=(—zT)"'u, and
x,= (I —zT,)"" u, for n sufficiently large. Then

lim [x, — x|'/" = 0. (3.16)
n—o0

Proof. By (2.6) we have x=p(p—2z) '(I—z(p—2z) ' 4) ' u, with
z(p—z)~' regular for A. In a similar way, using x,€ U,, we get
x,=p(p—2)""U—2z{(p—z)""4,) " u, for large n. Hence (3.16) follows
from Lemma 3.1. 1

THEOREM 3.2. Let f be meromorphic on C*\{p}, p+#0, p+ oo and let
()= c.z" in some neighborhood of 0, f(0)=1, and
f(2)==3% c_,z ¥ in some neighborhood of co. Suppose that (¢,)yc7 is
m-seminormal for some nonnegative integer m. Let T be as in (3.13) and
assume that (P\™(T) u,)*_, is a basis of H. Then the sequence (R\"(z));
of (n— 1)/n;m) two point Padé approximants to f converges to f(z) for
every z which is regular for T and the convergence is faster then any
geomeltric progression.

Proof. If z is regular for T and n is large enough, we have by
Theorem 3.1

R (z)= (I —zT,) " uy, y)
and because

f@)={UI—zT)"" uy, uy)
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Lemma 3.3 gives

| RE@) = f @) <= 2T,) "ty — (I = 2T) " a7 >0

as n—o. I

Remark 3.3. The values of z which are not regular for 7 form a coun-
table 'set which has no accumulation point in C* except possibly p.
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